


Pearson Advanced Chemistry Series

The need for innovation, adaptability, and discovery are more glaring in our world  
today than ever. Globally, we all look to “thought leaders” for progress, many of whom 
were, are, or will be students of science. Whether these students were inspired by a book, 
a teacher, or technology, we at Pearson Education want to do our part to support their 
 studies. The new Advanced Chemistry Series supports upper-level course work with 
cutting-edge content delivered by experienced authors and innovative multimedia. We re-
alize chemistry can be a difficult area of study and we want to do all we can to encourage 
not just completion of course work, but also the building of the foundations of remarkable 
scholarly and professional success. Pearson Education is honored to be  partnering with 
chemistry instructors and future STEM majors. To learn more about Pearson’s Advanced 
Chemistry Series, explore other titles, or access materials to accompany this text and 
others in the series, please visit www.pearsonhighered.com/advchemistry. 

Books available in this series include:

Analytical Chemistry and Quantitative Analysis
by David S. Hage University of Nebraska Lincoln and 
James R. Carr University of  Nebraska Lincoln

Forensic Chemistry
by Suzanne Bell West Virginia University

Inorganic Chemistry
by Gary Miessler St. Olaf College, Paul Fischer Macalester College, 
Donald Tarr St. Olaf College

Medicinal Chemistry: The Modern Drug Discovery Process 
by Erland Stevens  Davidson College

Physical Chemistry: Quantum Chemistry and Molecular Interactions
by Andrew Cooksy University of California San Diego

Physical Chemistry: Thermodynamics, Statistical Mechanics, and Kinetics
by Andrew Cooksy University of California San Diego

Physical Chemistry
by Thomas Engel University of Washington and Philip Reid University of Washington

Physical Chemistry: Principles and Applications in Biological Sciences 
by  Ignacio Tinoco Jr. University of California Berkeley, Kenneth Sauer University of 
California Berkeley, James C. Wang Harvard University, Joseph D. Puglisi Stanford 
University,  Gerard Harbison University of Nebraska Lincoln, David Rovnyak Bucknell 
University

Quantum Chemistry 
by Ira N. Levine Brooklyn College, City College of New York



Quantum Chemistry

Boston   Columbus   Indianapolis   New York   San Franciso   Upper Saddle River 
Amsterdam   Cape Town   Dubai   London   Madrid   Milan   Munich   Paris   Montréal   Toronto 

Delhi   Mexico City   São Paulo   Sydney   Hong Kong   Seoul   Singagore   Taipei   Tokyo

Se v e nth    Editi   o n

Ira N. Levine
Chemistry Department, Brooklyn College, City University of New York



Editor in Chief: Adam Jaworski
Executive Editor: Jeanne Zalesky
Senior Marketing Manager: Jonathan Cottrell 
Project Editor: Jessica Moro
Assistant Editor: Lisa R. Pierce
Media Producer: Erin Fleming
Editorial Assistant: Lisa Tarabokjia
Senior Marketing Assistant: Nicola Houston
Managing Editor, Chemistry and Geosciences: Gina M. Cheselka
Project Manager, Production: Wendy Perez
Full-Service Project Management/Composition: PreMediaGlobal

Full-Service Project Manager: Jenna Gray, PreMediaGlobal
Copy Editor: Betty Pessagno
Proofreader: Martha Ghent
Design Manager: Mark Ong 
Interior and Cover Design: Gary Hespenheide
Manager of Permissions: Timothy Nicholls
Permissions Specialist: Alison Bruckner 
Operations Specialist: Jeffrey Sargent
Cover Image Credit: Cover art created by Ira N. Levine using 

Spartan Student Physical Chemistry Edition software, © 2012 
Wavefunction, http://www.wavefun.com/products/products.html

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this 
textbook appear on the appropriate page within the text.

Copyright © 2014, 2009, 2000, 1991 by Pearson Education, Inc. Copyright © 1983, 1974, 1970 by Allyn 
and Bacon, Inc. All rights reserved. Manufactured in the United States of America. This publication is 
protected by Copyright, and permission should be obtained from the publisher prior to any prohibited 
reproduction, storage in a retrieval system, or transmission in any form or by any means: electronic, 
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this 
work, please submit a written request to Pearson Education, Inc., Permissions Department, 1 Lake 
Street, Department 1G, Upper Saddle River, NJ 07458.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark 
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Levine, Ira N., date
  Quantum chemistry / Ira N. Levine.—Seventh edition.
    pages cm
  ISBN-13: 978-0-321-80345-0
  ISBN-10: 0-321-80345-0
1.  Quantum chemistry—Textbooks.  I.  Title.
  QD462.L48 2014
  541'.28—dc23

2012039711

1  2  3  4  5  6  7  8  9  10—EB— 17  16  15  14  13

ISBN-10: 0-321-80345-0; ISBN-13: 978-0-321-80345-0 www.pearsonhighered.com



To my quantum chemistry students: Vincent Adams, Margaret Adamson, Emanuel Akinfeleye, 

Ricardo Alkins, Byongjae An, Salvatore Atzeni, Abe Auerbach, Andrew Auerbach, Nikolay Azar, 

Joseph Barbuto, David Baron, Christie Basseth, Sene Bauman, Laurance Beaton, Howard Becker, 

Michael Beitchman, Anna Berne, Kamal Bharucha, Susan Bienenfeld, Mark Blackman, Toby Block, 

Allen Bloom, Gina Bolnet, Demetrios Boyce, Diza Braksmayer, Steve Braunstein, Paul Brumer, Jean Brun,  

Margaret Buckley, Lynn Caporale, Richard Carter, Julianne Caton-Williams, Shih-ching Chang,  

Ching-hong Chen, Hongbin Chen, Huifen Chen, Kangmin Chen, Kangping Chen, Guang-Yu Cheng, 

Yu-Chi Cheng, El-hadi Cherchar, Jeonghwan Cho, Ting-Yi Chu, Kyu Suk Chung, Joseph Cincotta,  

Robert Curran, Joseph D’Amore, Ronald Davy, Jody Delsol, Aly Dominique, Xiao-Hong Dong,  

Barry DuRon, Azaria Eisenberg, Myron Elgart, Musa Elmagadam, Anna Eng, Stephen Engel,  

Jesus Estrada, Quianping Fang, Nicola Farina, Larry Filler, Seymour Fishman, Charles Forgy,  

Donald Franceschetti, Mark Freilich, Michael Freshwater, Tobi Eisenstein Fried, Joel Friedman,  

Kenneth Friedman, Malgorzata Frik, Aryeh Frimer, Mark Froimowitz, Irina Gaberman,  

Paul Gallant, Hong Gan, Mark Gold, Stephen Goldman, Neil Goodman, Roy Goodman, Isaac Gorbaty,  

Aleksander Gorbenko, Nicolas Gordon, Steven Greenberg, Walter Greigg, Michael Gross, Zhijie Gu,  

Judy Guiseppi-Henry, Lin Guo, Hasan Hajomar, Runyu Han, Sheila Handler, Noyes Harrigan,  

Jun He, Warren Hirsch, Hsin-Pin Ho, Richard Hom, Kuo-zong Hong, Mohammed Hossain,  

Fu-juan Hsu, Bo Hu, Jong-chin Hwan, Leonard Itzkowitz, Colin John, Mark Johnson, Joshua Jones,  

Kirby Juengst, Abraham Karkowsky, Spiros Kassomenakis, Abdelahad Khajo, Mohammed Khan,  

Michael Kittay, Colette Knight, Barry Kohn, Yasemin Kopkalli, Malgorzata Kulcyk-Stanko, David Kurnit,  

Athanasios Ladas, Alan Lambowitz, Eirini Lampiri, Bentley Lane, Yedidyah Langsam, Noah Lansner,  

Surin Laosooksathit, Chi-Yin Lee, Chiu Hong Lee, Leda Lee, Stephen Lemont, Elliot Lerner,  

Jiang Li, Zheng Li, Israel Liebersohn, Joel Liebman, Steven Lipp, Maryna Lisai, Huiyu Liu,  

Letian Liu, James Liubicich, John Lobo, Rachel Loftoa, Wei Luo, Dennis Lynch, Michelle Maison,  

Mohammad Malik, Pietro Mangiaracina, Louis Maresca, Allen Marks, Tom McDonough,  

Keisha McMillan, Antonio Mennito, Leonid Metlitsky, Ira Michaels, Tziril Miller, Mihaela Minnis,  

Bin Mo, Qi Mo, Paul Mogolesko, Murad Mohammad, Alim Monir, Safrudin Mustopa, Irving Nadler,  

Stuart Nagourney, Kwazi Ndlovu, Harold Nelson, Wen-Hui Pan, Padmanabhan Parakat, Frank Pecci,  

Albert Pierre-Louis, Paloma Pimenta, Eli Pines, Jerry Polesuk, Arlene Gallanter Pollin, James Pollin,  

Lahanda Punyasena, Cynthia Racer, Munira Rampersaud, Caleen Ramsook, Robert Richman,  

Richard Rigg, Bruce Rosenberg, Martin Rosenberg, Robert Rundberg, Edward Sachs, Mohamed Salem,  

Mahendra Sawh, David Schaeffer, Gary Schneier, Neil Schweid, Judith Rosenkranz Selwyn,  

Gunnar Senum, Simone Shaker, Steven Shaya, Allen Sheffron, Wu-mian Shen, Yuan Shi, Lawrence Shore,  

Mei-Ling Shotts, Alvin Silverstein, Barry Siskind, Jerome Solomon, De Zai Song, Henry Sperling,  

Joseph Springer, Charles Stimler, Helen Sussman, Sybil Tobierre, Dana McGowan Tormey, David Trauber,  

Balindra Tripathi, Choi Han Tsang, King-hung Tse, Michele Tujague, Irina Vasilkin, Natalya Voluschuk,  

Sammy Wainhaus, Nahid Wakili, Alan Waldman, Huai Zhen Wang, Zheng Wang, Robert Washington,  

Janet Weaver, William Wihlborg, Peter Williamsen, Frederic Wills, Shiming Wo, Guohua Wu, Jinan Wu,  

Xiaowen Wu, Ming Min Xia, Wei-Guo Xia, Xiaoming Ye, Ching-Chun Yiu, Wen Young, Xue-yi Yuan,  

Ken Zaner, Juin-tao Zhang, Hannian Zhao, Li Li Zhou, Shan Zhou, Yun Zhou.



iv

Preface  x

Chapter 1	 The Schrödinger Equation  1
1.1 Quantum Chemistry  1

1.2 Historical Background of Quantum Mechanics  2

1.3 The Uncertainty Principle  6

1.4 The Time-Dependent Schrödinger Equation  7

1.5 The Time-Independent Schrödinger Equation  11

1.6 Probability  14

1.7 Complex Numbers  16

1.8 Units  17

1.9 Calculus  18

Summary  18
Problems  19

Chapter 2	 The Particle in a Box  21
2.1 Differential Equations  21

2.2 Particle in a One-Dimensional Box  22

2.3 The Free Particle in One Dimension  28

2.4 Particle in a Rectangular Well  28

2.5 Tunneling  30

Summary  31
Problems  31

Chapter 3	 Operators  34
3.1 Operators  34

3.2 Eigenfunctions and Eigenvalues  38

3.3 Operators and Quantum Mechanics  39

3.4 The Three-Dimensional, Many-Particle Schrödinger Equation  44

3.5 The Particle in a Three-Dimensional Box  47

3.6 Degeneracy  50

3.7 Average Values  51

3.8 Requirements for an Acceptable Wave Function  54

Summary  55
Problems  56

Contents 



Contents  |  v

Chapter 4	 The Harmonic Oscillator  60
4.1 Power-Series Solution of Differential Equations  60

4.2 The One-Dimensional Harmonic Oscillator  62

4.3 Vibration of Diatomic Molecules  71

4.4 Numerical Solution of the One-Dimensional Time-Independent Schrödinger Equation  74

Summary  84
Problems  84

Chapter 5	 Angular Momentum  90
5.1 Simultaneous Specification of Several Properties  90

5.2 Vectors  94

5.3 Angular Momentum of a One-Particle System  99

5.4 The Ladder-Operator Method for Angular Momentum  110

Summary  114
Problems  115

Chapter 6	 The Hydrogen Atom  118
6.1 The One-Particle Central-Force Problem  118

6.2 Noninteracting Particles and Separation of Variables  120

6.3 Reduction of the Two-Particle Problem to Two One-Particle Problems  121

6.4 The Two-Particle Rigid Rotor  124

6.5 The Hydrogen Atom  128

6.6 The Bound-State Hydrogen-Atom Wave Functions  135

6.7 Hydrogenlike Orbitals  143

6.8 The Zeeman Effect  147

6.9 Numerical Solution of the Radial Schrödinger Equation  149

Summary  150
Problems  151

Chapter 7	 Theorems of Quantum Mechanics  155
7.1 Notation  155

7.2 Hermitian Operators  156

7.3 Expansion in Terms of Eigenfunctions  161

7.4 Eigenfunctions of Commuting Operators  167

7.5 Parity  170

7.6 Measurement and the Superposition of States  172

7.7 Position Eigenfunctions  177

7.8 The Postulates of Quantum Mechanics  180

7.9 Measurement and the Interpretation of Quantum Mechanics  184

7.10 Matrices  187

Summary  191
Problems  191



vi  |  Contents

Chapter 8	 The Variation Method  197
8.1 The Variation Theorem  197

8.2 Extension of the Variation Method  201

8.3 Determinants  202

8.4 Simultaneous Linear Equations  205

8.5 Linear Variation Functions  209

8.6 Matrices, Eigenvalues, and Eigenvectors  215

Summary  223
Problems  223

Chapter 9	 Perturbation Theory  232
9.1 Perturbation Theory  232

9.2 Nondegenerate Perturbation Theory  233

9.3 Perturbation Treatment of the Helium-Atom Ground State  238

9.4 Variation Treatments of the Ground State of Helium  242

9.5 Perturbation Theory for a Degenerate Energy Level  245

9.6 Simplification of the Secular Equation  248

9.7 Perturbation Treatment of the First Excited States of Helium  250

9.8 Time-Dependent Perturbation Theory  256

9.9 Interaction of Radiation and Matter  258

Summary  260
Problems  261

Chapter 10	 Electron Spin and the Spin–Statistics Theorem  265
10.1 Electron Spin  265

10.2 Spin and the Hydrogen Atom  268

10.3 The Spin–Statistics Theorem  268

10.4 The Helium Atom  271

10.5 The Pauli Exclusion Principle  273

10.6 Slater Determinants  277

10.7 Perturbation Treatment of the Lithium Ground State  278

10.8 Variation Treatments of the Lithium Ground State  279

10.9 Spin Magnetic Moment  280

10.10 Ladder Operators for Electron Spin  283

Summary  285
Problems  285

Chapter 11	 Many-Electron Atoms  289
11.1 The Hartree–Fock Self-Consistent-Field Method  289

11.2 Orbitals and the Periodic Table  295

11.3 Electron Correlation  298

11.4 Addition of Angular Momenta  300



Contents  |  vii

11.5 Angular Momentum in Many-Electron Atoms  305

11.6 Spin–Orbit Interaction  316

11.7 The Atomic Hamiltonian  318

11.8 The Condon–Slater Rules  320

Summary  323
Problems  324

Chapter 12	 Molecular Symmetry  328
12.1 Symmetry Elements and Operations  328

12.2 Symmetry Point Groups  335

Summary  341
Problems  342

Chapter 13	 Electronic Structure of Diatomic Molecules  344
13.1 The Born–Oppenheimer Approximation  344

13.2 Nuclear Motion in Diatomic Molecules  347

13.3 Atomic Units  352

13.4 The Hydrogen Molecule Ion  353

13.5 Approximate Treatments of the H+
2 Ground Electronic State  357

13.6 Molecular Orbitals for H+
2 Excited States  365

13.7 MO Configurations of Homonuclear Diatomic Molecules  369

13.8 Electronic Terms of Diatomic Molecules  375

13.9 The Hydrogen Molecule  379

13.10 The Valence-Bond Treatment of H2  382

13.11 Comparison of the MO and VB Theories  384

13.12 MO and VB Wave Functions for Homonuclear Diatomic Molecules  386

13.13 Excited States of H2  389

13.14 SCF Wave Functions for Diatomic Molecules  390

13.15 MO Treatment of Heteronuclear Diatomic Molecules  393

13.16 VB Treatment of Heteronuclear Diatomic Molecules  396

13.17 The Valence-Electron Approximation  396

Summary  397
Problems  398

Chapter 14	 Theorems of Molecular Quantum Mechanics  402
14.1 Electron Probability Density  402

14.2 Dipole Moments  404

14.3 The Hartree–Fock Method for Molecules  407

14.4 The Virial Theorem  416

14.5 The Virial Theorem and Chemical Bonding  422

14.6 The Hellmann–Feynman Theorem  426

14.7 The Electrostatic Theorem  429

Summary  432
Problems  433



viii  |  Contents

Chapter 15	 Molecular Electronic Structure  436
15.1 Ab Initio, Density-Functional, Semiempirical, and Molecular-Mechanics Methods  436

15.2 Electronic Terms of Polyatomic Molecules  437

15.3 The SCF MO Treatment of Polyatomic Molecules  440

15.4 Basis Functions  442

15.5 The SCF MO Treatment of H2O  449

15.6 Population Analysis and Bond Orders  456

15.7 The Molecular Electrostatic Potential, Molecular Surfaces, and Atomic Charges  460

15.8 Localized MOs  464

15.9 The SCF MO Treatment of Methane, Ethane, and Ethylene  470

15.10 Molecular Geometry  480

15.11 Conformational Searching  490

15.12 Molecular Vibrational Frequencies  496

15.13 Thermodynamic Properties  498

15.14 Ab Initio Quantum Chemistry Programs  500

15.15 Performing Ab Initio Calculations  501

15.16 Speeding Up Hartree–Fock Calculations  507

15.17 Solvent Effects  510

Problems  518

Chapter 16	 Electron-Correlation Methods  525
16.1 Correlation Energy  525

16.2 Configuration Interaction  528

16.3 Møller–Plesset (MP) Perturbation Theory  539

16.4 The Coupled-Cluster Method  546

16.5 Density-Functional Theory  552

16.6 Composite Methods for Energy Calculations  572

16.7 The Diffusion Quantum Monte Carlo Method  575

16.8 Noncovalent Interactions  576

16.9 NMR Shielding Constants  578

16.10 Fragmentation Methods  580

16.11 Relativistic Effects  581

16.12 Valence-Bond Treatment of Polyatomic Molecules  582

16.13 The GVB, VBSCF, and BOVB Methods  589

16.14 Chemical Reactions  591

Problems  595

Chapter 17	 Semiempirical and Molecular-Mechanics Treatments of Molecules  600
17.1 Semiempirical MO Treatments of Planar Conjugated Molecules  600

17.2 The Hückel MO Method  601

17.3 The Pariser–Parr–Pople Method  619

17.4 General Semiempirical MO and DFT Methods  621



Contents  |  ix

17.5 The Molecular-Mechanics Method  634

17.6 Empirical and Semiempirical Treatments of Solvent Effects  648

17.7 Chemical Reactions  652

17.8 The Future of Quantum Chemistry  655

Problems  656

Appendix  661

Bibliography  665

Answers to Selected Problems  667

Index  679



x

This book is intended for first-year graduate and advanced undergraduate courses in 
quantum chemistry. This text provides students with an in-depth treatment of quantum 
chemistry, and enables them to understand the basic principles. The limited mathematics 
background of many chemistry students is taken into account, and reviews of necessary 
mathematics (such as complex numbers, differential equations, operators, and vectors) are 
included. Derivations are presented in full, step-by-step detail so that students at all levels 
can easily follow and understand. A rich variety of homework problems (both quantitative 
and conceptual) is given for each chapter. 

New to this Edition
The following improvements were made to the seventh edition:

•	 Thorough updates reflect the latest quantum chemistry research and methods 
of computational chemistry, including many new literature references.

•	 New problems have been added to most chapters, including additional 
computational problems in Chapters 15 and 16.

•	E xplanations have been revised in areas where students had difficulty.
•	 Color has been added to figures to increase the visual appeal of the book.
•	 The computer programs in the Solutions Manual and the text were changed from 

BASIC to C++.
•	 The text is enlivened by references to modern research in quantum mechanics 

such as the Ozawa reformulation of the uncertainty principle and the observation 
of interference effects with very large molecules. 

New and expanded material in the seventh edition includes

•	 New theoretical and experimental work on the uncertainty principle (Section 5.1).
•	 The CM5 and Hirshfeld-I methods for atomic charges (Section 15.7).
•	 Static and dynamic correlation (Section 16.1).
•	E xpanded treatment of extrapolation to the complete-basis-set (CBS) limit 

(Sections 15.5, 16.1 and 16.4).
•	 Use of the two-electron reduced density matrix (Section 16.2). 
•	 The DFT-D3 method (Section 16.5).
•	 The VV10 correlation functional for dispersion (Section 16.5).
•	 The W1-F12 and W2-F12 methods (Section 16.6).
•	 Dispersion (stacking) interactions in DNA (Section 16.8).
•	 The MP2.5, MP2.X, SCS(MI)-CCSD, and SCS(MI)-MP2 methods (Section 16.8).
•	 An expanded discussion of calculation of NMR shielding constants and spin-spin 

coupling constants including linear scaling (Section 16.9).
•	 Fragmentation methods (Section 16.10).
•	 The PM6-D3H4 and PM7 methods (Section 17.4).

Resources: Optional Spartan Student Edition molecular modeling software provides 
access to a sophisticated molecular modeling package that combines an easy-to-use 
graphical interface with a targeted set of computational functions. A solutions manual for 
the end-of-chapter problems in the book is available at http://www.pearsonhighered.com/
advchemistry.
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The extraordinary expansion of quantum chemistry calculations into all areas of 
chemistry makes it highly desirable for all chemistry students to understand modern methods 
of electronic structure calculation, and this book has been written with this goal in mind.

I have tried to make explanations clear and complete, without glossing over difficult 
or subtle points. Derivations are given with enough detail to make them easy to follow, 
and wherever possible I avoid resorting to the frustrating phrase “it can be shown that.” 
The aim is to give students a solid understanding of the physical and mathematical aspects 
of quantum mechanics and molecular electronic structure. The book is designed to be 
useful to students in all branches of chemistry, not just future quantum chemists. However, 
the presentation is such that those who do go on in quantum chemistry will have a good 
foundation and will not be hampered by misconceptions.

An obstacle faced by many chemistry students in learning quantum mechanics is 
their unfamiliarity with much of the required mathematics. In this text I have included 
detailed treatments of the needed mathematics. Rather than putting all the mathematics 
in an introductory chapter or a series of appendices, I have integrated the mathematics 
with the physics and chemistry. Immediate application of the mathematics to solving a 
quantum-mechanical problem will make the mathematics more meaningful to students 
than would separate study of the mathematics. I have also kept in mind the limited physics 
background of many chemistry students by reviewing topics in physics.

Previous editions of this book have benefited from the reviews and suggestions of 
Leland Allen, N. Colin Baird, Steven Bernasek, James Bolton, W. David Chandler, Donald 
Chesnut, R. James Cross, Gary DeBoer, Douglas Doren, David Farrelly, Melvyn Feinberg, 
Gordon A. Gallup, Daniel Gerrity, David Goldberg, Robert Griffin, Tracy Hamilton, 
Sharon Hammes-Schiffer, James Harrison, John Head, Warren Hehre, Robert Hinde, 
Hans Jaffé, Miklos Kertesz, Neil Kestner, Harry King, Peter Kollman, Anna Krylov, Mel 
Levy, Errol Lewars, Joel Liebman, Tien-Sung Tom Lin, Ryan McLaughlin, Frank Meeks, 
Robert Metzger, Charles Millner, John H. Moore, Pedro Muiño, William Palke, Sharon 
Palmer, Kirk Peterson, Gary Pfeiffer, Russell Pitzer, Oleg Prezhdo, Frank Rioux, Kenneth 
Sando, Harrison Shull, James J. P. Stewart, Richard Stratt, Fu-Ming Tao, Ronald Terry, 
Alexander Van Hook, Arieh Warshel, Peter Weber, John S. Winn, and Michael Zerner.

Reviewers for the seventh edition were

John Asbury, Pennsylvania State University
Mu-Hyun Baik, Indiana University
Lynne Batchelder, Tufts University
Richard Dawes, Missouri University of Science and Technology
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Chapter 1

The Schrödinger Equation

1.1 Quantum Chemistry
In the late seventeenth century, Isaac Newton discovered classical mechanics, the laws of 
motion of macroscopic objects. In the early twentieth century, physicists found that classi-
cal mechanics does not correctly describe the behavior of very small particles such as the 
electrons and nuclei of atoms and molecules. The behavior of such particles is described 
by a set of laws called quantum mechanics.

Quantum chemistry applies quantum mechanics to problems in chemistry. The 
influence of quantum chemistry is evident in all branches of chemistry. Physical chem-
ists use quantum mechanics to calculate (with the aid of statistical mechanics) thermo-
dynamic properties (for example, entropy, heat capacity) of gases; to interpret molecular 
spectra, thereby allowing experimental determination of molecular properties (for exam-
ple, molecular geometries, dipole moments, barriers to internal rotation, energy differ-
ences between conformational isomers); to calculate molecular properties theoretically; to 
calculate properties of transition states in chemical reactions, thereby allowing estimation 
of rate constants; to understand intermolecular forces; and to deal with bonding in solids.

Organic chemists use quantum mechanics to estimate the relative stabilities of mol-
ecules, to calculate properties of reaction intermediates, to investigate the mechanisms of 
chemical reactions, and to analyze and predict nuclear-magnetic-resonance spectra.

Analytical chemists use spectroscopic methods extensively. The frequencies and in-
tensities of lines in a spectrum can be properly understood and interpreted only through 
the use of quantum mechanics.

Inorganic chemists use ligand field theory, an approximate quantum-mechanical 
method, to predict and explain the properties of transition-metal complex ions.

Although the large size of biologically important molecules makes quantum-
mechanical calculations on them extremely hard, biochemists are beginning to benefit 
from quantum-mechanical studies of conformations of biological molecules, enzyme–
substrate binding, and solvation of biological molecules.

Quantum mechanics determines the properties of nanomaterials (objects with at least 
one dimension in the range 1 to 100 nm), and calculational methods to deal with nano-
materials are being developed. When one or more dimensions of a material fall below  
100 nm (and especially below 20 nm), dramatic changes in the optical, electronic, chemi-
cal, and other properties from those of the bulk material can occur. A semiconductor or 
metal object with one dimension in the 1 to 100 nm range is called a quantum well; one 
with two dimensions in this range is a quantum wire; and one with all three dimensions 
in this range is a quantum dot. The word quantum in these names indicates the key role 
played by quantum mechanics in determining the properties of such materials. Many 
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people have speculated that nanoscience and nanotechnology will bring about the “next 
industrial revolution.”

The rapid increase in computer speed and the development of new methods (such 
as density functional theory—Section 16.4) of doing molecular calculations have made 
quantum chemistry a practical tool in all areas of chemistry. Nowadays, several compa-
nies sell quantum-chemistry software for doing molecular quantum-chemistry calcula-
tions. These programs are designed to be used by all kinds of chemists, not just quantum 
chemists. Because of the rapidly expanding role of quantum chemistry and related theo-
retical and computational methods, the American Chemical Society began publication of 
a new periodical, the Journal of Chemical Theory and Computation, in 2005.

“Quantum mechanics . . . underlies nearly all of modern science and technology. It 
governs the behavior of transistors and integrated circuits . . . and is . . . the basis of modern 
chemistry and biology” (Stephen Hawking, A Brief History of Time, 1988, Bantam, chap. 4).

1.2 Historical Background of Quantum Mechanics
The development of quantum mechanics began in 1900 with Planck’s study of the light 
emitted by heated solids, so we start by discussing the nature of light.

In 1803, Thomas Young gave convincing evidence for the wave nature of light by 
observing diffraction and interference when light went through two adjacent pinholes. 
(Diffraction is the bending of a wave around an obstacle. Interference is the combining of 
two waves of the same frequency to give a wave whose disturbance at each point in space 
is the algebraic or vector sum of the disturbances at that point resulting from each interfer-
ing wave. See any first-year physics text.)

In 1864, James Clerk Maxwell published four equations, known as Maxwell’s equa-
tions, which unified the laws of electricity and magnetism. Maxwell’s equations predicted 
that an accelerated electric charge would radiate energy in the form of electromagnetic 
waves consisting of oscillating electric and magnetic fields. The speed predicted by Max-
well’s equations for these waves turned out to be the same as the experimentally measured 
speed of light. Maxwell concluded that light is an electromagnetic wave.

In 1888, Heinrich Hertz detected radio waves produced by accelerated electric 
charges in a spark, as predicted by Maxwell’s equations. This convinced physicists that 
light is indeed an electromagnetic wave.

All electromagnetic waves travel at speed c = 2.998 * 108 m/s in vacuum. The 
frequency n and wavelength l of an electromagnetic wave are related by

	 ln = c	 (1.1)

(Equations that are enclosed in a box should be memorized. The Appendix gives the Greek 
alphabet.) Various conventional labels are applied to electromagnetic waves depending on 
their frequency. In order of increasing frequency are radio waves, microwaves, infrared 
radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. We shall use the 
term light to denote any kind of electromagnetic radiation. Wavelengths of visible and 
ultraviolet radiation were formerly given in angstroms (Å) and are now given in nano-
meters (nm):

	 1 nm = 10-9 m,   1 Å = 10-10 m = 0.1 nm	 (1.2)

In the 1890s, physicists measured the intensity of light at various frequencies 
emitted by a heated blackbody at a fixed temperature, and did these measurements at sev-
eral temperatures. A blackbody is an object that absorbs all light falling on it. A good 
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approximation to a blackbody is a cavity with a tiny hole. In 1896, the physicist Wien 
proposed the following equation for the dependence of blackbody radiation on light fre-
quency and blackbody temperature: I = an3>ebn>T, where a and b are empirical constants, 
and I dn is the energy with frequency in the range n to n + dn radiated per unit time 
and per unit surface area by a blackbody, with dn being an infinitesimal frequency range. 
Wien’s formula gave a good fit to the blackbody radiation data available in 1896, but his 
theoretical arguments for the formula were considered unsatisfactory.

In 1899–1900, measurements of blackbody radiation were extended to lower frequen-
cies than previously measured, and the low-frequency data showed significant deviations 
from Wien’s formula. These deviations led the physicist Max Planck to propose in October 
1900 the following formula: I = an3> 1ebn>T - 12, which was found to give an excellent 
fit to the data at all frequencies.

Having proposed this formula, Planck sought a theoretical justification for it. In  
December 1900, he presented a theoretical derivation of his equation to the German Physi-
cal Society. Planck assumed the radiation emitters and absorbers in the blackbody to be 
harmonically oscillating electric charges (“resonators”) in equilibrium with electromag-
netic radiation in a cavity. He assumed that the total energy of those resonators whose fre-
quency is n consisted of N indivisible “energy elements,” each of magnitude hn, where N 
is an integer and h (Planck’s constant) was a new constant in physics. Planck distributed 
these energy elements among the resonators. In effect, this restricted the energy of each 
resonator to be a whole-number multiple of hv (although Planck did not explicitly say 
this). Thus the energy of each resonator was quantized, meaning that only certain discrete 
values were allowed for a resonator energy. Planck’s theory showed that a = 2ph>c2 and 
b = h>k, where k is Boltzmann’s constant. By fitting the experimental blackbody curves, 
Planck found h = 6.6 * 10-34 J # s. 

Planck’s work is usually considered to mark the beginning of quantum mechanics. 
However, historians of physics have debated whether Planck in 1900 viewed energy quan-
tization as a description of physical reality or as merely a mathematical approximation 
that allowed him to obtain the correct blackbody radiation formula. [See O. Darrigol, Cen-
taurus, 43, 219 (2001); C. A. Gearhart, Phys. Perspect., 4, 170 (2002) (available online 
at employees.csbsju.edu/cgearhart/Planck/PQH.pdf; S. G. Brush, Am. J. Phys., 70, 119 
(2002) (www.punsterproductions.com/~sciencehistory/cautious.htm).] The physics histo-
rian Kragh noted that “If a revolution occurred in physics in December 1900, nobody 
seemed to notice it. Planck was no exception, and the importance ascribed to his work is 
largely a historical reconstruction” (H. Kragh, Physics World, Dec. 2000, p. 31).

The concept of energy quantization is in direct contradiction to all previous ideas 
of physics. According to Newtonian mechanics, the energy of a material body can vary 
continuously. However, only with the hypothesis of quantized energy does one obtain the 
correct blackbody-radiation curves.

The second application of energy quantization was to the photoelectric effect. In the pho-
toelectric effect, light shining on a metal causes emission of electrons. The energy of a wave 
is proportional to its intensity and is not related to its frequency, so the electromagnetic-wave 
picture of light leads one to expect that the kinetic energy of an emitted photoelectron would 
increase as the light intensity increases but would not change as the light frequency changes. 
Instead, one observes that the kinetic energy of an emitted electron is independent of the 
light’s intensity but increases as the light’s frequency increases.

In 1905, Einstein showed that these observations could be explained by regarding light 
as composed of particlelike entities (called photons), with each photon having an energy

	 Ephoton = hn	 (1.3)
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When an electron in the metal absorbs a photon, part of the absorbed photon energy is 
used to overcome the forces holding the electron in the metal; the remainder appears as 
kinetic energy of the electron after it has left the metal. Conservation of energy gives 
hn = � + T, where � is the minimum energy needed by an electron to escape the metal 
(the metal’s work function), and T is the maximum kinetic energy of an emitted electron. 
An increase in the light’s frequency n increases the photon energy and hence increases the 
kinetic energy of the emitted electron. An increase in light intensity at fixed frequency in-
creases the rate at which photons strike the metal and hence increases the rate of emission 
of electrons, but does not change the kinetic energy of each emitted electron. (According 
to Kragh, a strong “case can be made that it was Einstein who first recognized the essence 
of quantum theory”; Kragh, Physics World, Dec. 2000, p. 31.)

The photoelectric effect shows that light can exhibit particlelike behavior in addition 
to the wavelike behavior it shows in diffraction experiments.

In 1907, Einstein applied energy quantization to the vibrations of atoms in a solid ele-
ment, assuming that each atom’s vibrational energy in each direction 1x, y, z2 is restricted 
to be an integer times hnvib, where the vibrational frequency nvib is characteristic of the 
element. Using statistical mechanics, Einstein derived an expression for the constant- 
volume heat capacity CV of the solid. Einstein’s equation agreed fairly well with known 
CV -versus-temperature data for diamond.

Now let us consider the structure of matter.
In the late nineteenth century, investigations of electric discharge tubes and natu-

ral radioactivity showed that atoms and molecules are composed of charged particles. 
Electrons have a negative charge. The proton has a positive charge equal in magnitude 
but opposite in sign to the electron charge and is 1836 times as heavy as the electron. 
The third constituent of atoms, the neutron (discovered in 1932), is uncharged and slightly 
heavier than the proton.

Starting in 1909, Rutherford, Geiger, and Marsden repeatedly passed a beam of alpha 
particles through a thin metal foil and observed the deflections of the particles by allowing 
them to fall on a fluorescent screen. Alpha particles are positively charged helium nuclei 
obtained from natural radioactive decay. Most of the alpha particles passed through the 
foil essentially undeflected, but, surprisingly, a few underwent large deflections, some be-
ing deflected backward. To get large deflections, one needs a very close approach between 
the charges, so that the Coulombic repulsive force is great. If the positive charge were 
spread throughout the atom (as J. J. Thomson had proposed in 1904), once the high-energy 
alpha particle penetrated the atom, the repulsive force would fall off, becoming zero at the 
center of the atom, according to classical electrostatics. Hence Rutherford concluded that 
such large deflections could occur only if the positive charge were concentrated in a tiny, 
heavy nucleus.

An atom contains a tiny (10-13 to 10-12 cm radius), heavy nucleus consisting of neu-
trons and Z protons, where Z is the atomic number. Outside the nucleus there are Z elec-
trons. The charged particles interact according to Coulomb’s law. (The nucleons are held 
together in the nucleus by strong, short-range nuclear forces, which will not concern us.) 
The radius of an atom is about one angstrom, as shown, for example, by results from the 
kinetic theory of gases. Molecules have more than one nucleus.

The chemical properties of atoms and molecules are determined by their electronic 
structure, and so the question arises as to the nature of the motions and energies of the 
electrons. Since the nucleus is much more massive than the electron, we expect the motion 
of the nucleus to be slight compared with the electrons’ motions.

In 1911, Rutherford proposed his planetary model of the atom in which the elec-
trons revolved about the nucleus in various orbits, just as the planets revolve about the 
sun. However, there is a fundamental difficulty with this model. According to classical 
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electromagnetic theory, an accelerated charged particle radiates energy in the form of 
electromagnetic (light) waves. An electron circling the nucleus at constant speed is being 
accelerated, since the direction of its velocity vector is continually changing. Hence the 
electrons in the Rutherford model should continually lose energy by radiation and there-
fore would spiral toward the nucleus. Thus, according to classical (nineteenth-century) 
physics, the Rutherford atom is unstable and would collapse.

A possible way out of this difficulty was proposed by Niels Bohr in 1913, when he ap-
plied the concept of quantization of energy to the hydrogen atom. Bohr assumed that the 
energy of the electron in a hydrogen atom was quantized, with the electron constrained 
to move only on one of a number of allowed circles. When an electron makes a transition 
from one Bohr orbit to another, a photon of light whose frequency v satisfies

	 Eupper - Elower = hn	 (1.4)

is absorbed or emitted, where Eupper and Elower are the energies of the upper and lower 
states (conservation of energy). With the assumption that an electron making a transition 
from a free (ionized) state to one of the bound orbits emits a photon whose frequency 
is an integral multiple of one-half the classical frequency of revolution of the electron 
in the bound orbit, Bohr used classical mechanics to derive a formula for the hydrogen-
atom energy levels. Using (1.4), he got agreement with the observed hydrogen spectrum. 
However, attempts to fit the helium spectrum using the Bohr theory failed. Moreover, the 
theory could not account for chemical bonds in molecules.

The failure of the Bohr model arises from the use of classical mechanics to describe 
the electronic motions in atoms. The evidence of atomic spectra, which show discrete 
frequencies, indicates that only certain energies of motion are allowed; the electronic en-
ergy is quantized. However, classical mechanics allows a continuous range of energies. 
Quantization does occur in wave motion—for example, the fundamental and overtone fre-
quencies of a violin string. Hence Louis de Broglie suggested in 1923 that the motion of 
electrons might have a wave aspect; that an electron of mass m and speed v would have a 
wavelength

	 l =
h

mv

=
h
p

	 (1.5)

associated with it, where p is the linear momentum. De Broglie arrived at Eq. (1.5) by 
reasoning in analogy with photons. The energy of a photon can be expressed, according 
to Einstein’s special theory of relativity, as E = pc, where c is the speed of light and p is 
the photon’s momentum. Using Ephoton = hn, we get pc = hn = hc>l and l = h>p for 
a photon traveling at speed c. Equation (1.5) is the corresponding equation for an electron.

In 1927, Davisson and Germer experimentally confirmed de Broglie’s hypothesis by 
reflecting electrons from metals and observing diffraction effects. In 1932, Stern observed 
the same effects with helium atoms and hydrogen molecules, thus verifying that the wave 
effects are not peculiar to electrons, but result from some general law of motion for mi-
croscopic particles. Diffraction and interference have been observed with molecules as 
large as C48H26F24N8O8 passing through a diffraction grating [T. Juffmann et al., Nat. 
Nanotechnol., 7, 297 (2012).]. A movie of the buildup of an interference pattern involving 
C32H18N8 molecules can be seen at www.youtube.com/watch?v=vCiOMQIRU7I.

Thus electrons behave in some respects like particles and in other respects like waves. 
We are faced with the apparently contradictory “wave–particle duality” of matter (and of 
light). How can an electron be both a particle, which is a localized entity, and a wave, 
which is nonlocalized? The answer is that an electron is neither a wave nor a particle, but 
something else. An accurate pictorial description of an electron’s behavior is impossible 
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using the wave or particle concept of classical physics. The concepts of classical phys-
ics have been developed from experience in the macroscopic world and do not properly 
describe the microscopic world. Evolution has shaped the human brain to allow it to un-
derstand and deal effectively with macroscopic phenomena. The human nervous system 
was not developed to deal with phenomena at the atomic and molecular level, so it is not 
surprising if we cannot fully understand such phenomena.

Although both photons and electrons show an apparent duality, they are not the same 
kinds of entities. Photons travel at speed c in vacuum and have zero rest mass; electrons 
always have v 6 c and a nonzero rest mass. Photons must always be treated relativisti-
cally, but electrons whose speed is much less than c can be treated nonrelativistically.

1.3 The Uncertainty Principle
Let us consider what effect the wave–particle duality has on attempts to measure simulta-
neously the x coordinate and the x component of linear momentum of a microscopic par-
ticle. We start with a beam of particles with momentum p, traveling in the y direction, and 
we let the beam fall on a narrow slit. Behind this slit is a photographic plate. See Fig. 1.1.

Particles that pass through the slit of width w have an uncertainty w in their x coor-
dinate at the time of going through the slit. Calling this spread in x values �x, we have 
�x = w.

Since microscopic particles have wave properties, they are diffracted by the slit pro-
ducing (as would a light beam) a diffraction pattern on the plate. The height of the graph 
in Fig. 1.1 is a measure of the number of particles reaching a given point. The diffraction 
pattern shows that when the particles were diffracted by the slit, their direction of motion 
was changed so that part of their momentum was transferred to the x direction. The x 
component of momentum px equals the projection of the momentum vector p in the x di-
rection. A particle deflected upward by an angle a has px = p sin a. A particle deflected 
downward by a has px = -p sin a. Since most of the particles undergo deflections in the 
range -a to a, where a is the angle to the first minimum in the diffraction pattern, we 
shall take one-half the spread of momentum values in the central diffraction peak as a 
measure of the uncertainty �px in the x component of momentum: �px = p sin a.

Hence at the slit, where the measurement is made,

	 �x �px = pw sin a	 (1.6)
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Figure 1.1  Diffraction of 
electrons by a slit.
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The angle a at which the first diffraction minimum occurs is readily calculated. 
The condition for the first minimum is that the difference in the distances traveled by 
particles passing through the slit at its upper edge and particles passing through the cen-
ter of the slit should be equal to 1

2 l, where l is the wavelength of the associated wave. 
Waves originating from the top of the slit are then exactly out of phase with waves origi-
nating from the center of the slit, and they cancel each other. Waves originating from 
a point in the slit at a distance d below the slit midpoint cancel with waves originating 
at a distance d below the top of the slit. Drawing AC in Fig. 1.2 so that AD = CD, we 
have the difference in path length as BC. The distance from the slit to the screen is 
large compared with the slit width. Hence AD and BD are nearly parallel. This makes 
the angle ACB essentially a right angle, and so angle BAC = a. The path difference 
BC is then 1

2 w sin a. Setting BC equal to 1
2 l, we have w sin a = l, and Eq. (1.6) be-

comes �x �px = pl. The wavelength l is given by the de Broglie relation l = h>p, so 
�x �px = h. Since the uncertainties have not been precisely defined, the equality sign 
is not really justified. Instead we write

	 �x �px � h	 (1.7)

indicating that the product of the uncertainties in x and px is of the order of magnitude of 
Planck’s constant.

Although we have demonstrated (1.7) for only one experimental setup, its validity 
is general. No matter what attempts are made, the wave–particle duality of microscopic 
“particles” imposes a limit on our ability to measure simultaneously the position and mo-
mentum of such particles. The more precisely we determine the position, the less accurate 
is our determination of momentum. (In Fig. 1.1, sin a = l>w, so narrowing the slit in-
creases the spread of the diffraction pattern.) This limitation is the uncertainty principle, 
discovered in 1927 by Werner Heisenberg.

Because of the wave–particle duality, the act of measurement introduces an uncon-
trollable disturbance in the system being measured. We started with particles having a 
precise value of px (zero). By imposing the slit, we measured the x coordinate of the par-
ticles to an accuracy w, but this measurement introduced an uncertainty into the px values 
of the particles. The measurement changed the state of the system.

1.4 The Time-Dependent Schrödinger Equation
Classical mechanics applies only to macroscopic particles. For microscopic “particles” 
we require a new form of mechanics, called quantum mechanics. We now consider some 
of the contrasts between classical and quantum mechanics. For simplicity a one-particle, 
one-dimensional system will be discussed.

Figure 1.2  Calculation of 
first diffraction minimum.
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In classical mechanics the motion of a particle is governed by Newton’s second law:

	 F = ma = m 
d 2x

dt 2 	 (1.8)

where F is the force acting on the particle, m is its mass, and t is the time; a is the ac-
celeration, given by a = dv>dt = 1d>dt21dx>dt2 = d 2x>dt 2, where v is the velocity. 
Equation (1.8) contains the second derivative of the coordinate x with respect to time. To 
solve it, we must carry out two integrations. This introduces two arbitrary constants c1 and 
c2 into the solution, and
	 x = g1t, c1, c22	 (1.9)

where g is some function of time. We now ask: What information must we possess at a 
given time t0 to be able to predict the future motion of the particle? If we know that at t0 
the particle is at point x0, we have
	 x0 = g1t0, c1, c22	 (1.10)

Since we have two constants to determine, more information is needed. Differentiating 
(1.9), we have

dx

dt
= v =

d

dt
 g1t, c1, c22

If we also know that at time t0 the particle has velocity v0, then we have the additional 
relation

	 v0 =
d

dt
 g1t, c1, c22 `

t = t0

	 (1.11)

We may then use (1.10) and (1.11) to solve for c1 and c2 in terms of x0 and v0. Knowing c1 
and c2, we can use Eq. (1.9) to predict the exact future motion of the particle.

As an example of Eqs. (1.8) to (1.11), consider the vertical motion of a particle in 
the earth’s gravitational field. Let the x axis point upward. The force on the particle is 
downward and is F = -mg, where g is the gravitational acceleration constant. New-
ton’s second law (1.8) is -mg = m d 2x>dt 2, so d 2x>dt 2 = -g. A single integration gives 
dx>dt = -gt + c1. The arbitrary constant c1 can be found if we know that at time t0 the 
particle had velocity v0. Since v = dx>dt, we have v0 = -gt0 + c1 and c1 = v0 + gt0. 
Therefore, dx>dt = -gt + gt0 + v0. Integrating a second time, we introduce another ar-
bitrary constant c2, which can be evaluated if we know that at time t0 the particle had 
position x0. We find (Prob. 1.7) x = x0 -

1
2 g1t - t022 + v01t - t02. Knowing x0 and v0 

at time t0, we can predict the future position of the particle.
The classical-mechanical potential energy V of a particle moving in one dimension is 

defined to satisfy

	
0V1x, t2

0x
= -F1x, t2	 (1.12)

For example, for a particle moving in the earth’s gravitational field, 0V>0x = -F = mg 
and integration gives V = mgx + c, where c is an arbitrary constant. We are free to set 
the zero level of potential energy wherever we please. Choosing c = 0, we have V = mgx 
as the potential-energy function.

The word state in classical mechanics means a specification of the position and veloc-
ity of each particle of the system at some instant of time, plus specification of the forces 
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acting on the particles. According to Newton’s second law, given the state of a system at 
any time, its future state and future motions are exactly determined, as shown by Eqs. 
(1.9)–(1.11). The impressive success of Newton’s laws in explaining planetary motions led 
many philosophers to use Newton’s laws as an argument for philosophical determinism. 
The mathematician and astronomer Laplace (1749–1827) assumed that the universe con-
sisted of nothing but particles that obeyed Newton’s laws. Therefore, given the state of the 
universe at some instant, the future motion of everything in the universe was completely 
determined. A super-being able to know the state of the universe at any instant could, in 
principle, calculate all future motions.

Although classical mechanics is deterministic, many classical-mechanical systems 
(for example, a pendulum oscillating under the influence of gravity, friction, and a 
periodically varying driving force) show chaotic behavior for certain ranges of the 
systems’ parameters. In a chaotic system, the motion is extraordinarily sensitive to 
the initial values of the particles’ positions and velocities and to the forces acting, and 
two initial states that differ by an experimentally undetectable amount will eventually 
lead to very different future behavior of the system. Thus, because the accuracy with 
which one can measure the initial state is limited, prediction of the long-term behavior 
of a chaotic classical-mechanical system is, in practice, impossible, even though the 
system obeys deterministic equations. Computer calculations of solar-system plan-
etary orbits over tens of millions of years indicate that the motions of the planets are 
chaotic [I. Peterson, Newton’s Clock: Chaos in the Solar System, Freeman, 1993; 
J. J. Lissauer, Rev. Mod. Phys., 71, 835 (1999)].

Given exact knowledge of the present state of a classical-mechanical system, we can 
predict its future state. However, the Heisenberg uncertainty principle shows that we can-
not determine simultaneously the exact position and velocity of a microscopic particle, so 
the very knowledge required by classical mechanics for predicting the future motions of 
a system cannot be obtained. We must be content in quantum mechanics with something 
less than complete prediction of the exact future motion.

Our approach to quantum mechanics will be to postulate the basic principles and then 
use these postulates to deduce experimentally testable consequences such as the energy 
levels of atoms. To describe the state of a system in quantum mechanics, we postulate 
the existence of a function � of the particles’ coordinates called the state function or 
wave function (often written as wavefunction). Since the state will, in general, change 
with time, � is also a function of time. For a one-particle, one-dimensional system, we 
have � = �1x, t2. The wave function contains all possible information about a system, 
so instead of speaking of “the state described by the wave function �,” we simply say 
“the state �.” Newton’s second law tells us how to find the future state of a classical-
mechanical system from knowledge of its present state. To find the future state of a  
quantum-mechanical system from knowledge of its present state, we want an equation 
that tells us how the wave function changes with time. For a one-particle, one-dimensional 
system, this equation is postulated to be

	 -
U

i
 
0�1x, t2

0t
= -

U2

2m
 
02�1x, t2

0x2 + V1x, t2�1x, t2	 (1.13)

where the constant U (h-bar) is defined as

	 U K
h

2p
	 (1.14)




